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LETTER TO THE EDITOR 

Supersymmetric quantum mechanics, anomalies 
and factorization 

J Casahorran and J G Esteve 
Departamento de F i s k  Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 
Zaragoza, Spain 

Received 2 December 1991 

Abstract. The explicit symmetry breaking phenomenon in supenymmetric quantum 
mechanics (susv QM) is analysed in terms of anomalies. The anomalous behaviour can 
be assigned lo the supenymmetric charges which define the two Hamiltonians of the model. 
The relation between the presence of anomalies and the factorization of the Schrodinger 
equations is also discussed. 

It is not necessary to remark on the important role that supersymmetry, a special kind 
of symmetry which connects both bosonic and fermionic degrees of freedom, plays in 
most branches of theoretical physics. In particular, supersymmetric quantum mechanics 
(SUSY QM), the simplest framework that exhibits the aforementioned Bose-Fermi 
symmetry, constitutes in its own right the ideal scenario in order to analyse the 
supersymmetry breaking phenomenon. Unless otherwise noted we restrict ourselves 
in the following to one-dimensional problems. Whenever the superpotential function 
has no singularities in the whole domain -m < x < m, it happens that SUSY QM models 
can be classified into the cases where supersymmetry appears either unbroken or 
spontaneously broken. To be more specific, if SUSY remains unbroken the energy of 
the non-degenerate ground state is zero while the spontaneous breaking translates into 
a degenerate ground state with positive energy (see below) [l]. In any case, two other 
realizations of supersymmetry have been considered in the literature, namely dynamical 
or explicit breakings. With regard to the first case we simply point out that the most 
significant results appear to be associated with the semiclassical instanton method [2]. 
Going to the second case, Jevicki and Rodrigues were the first to realize that singular 
superpotentials yield models which exhibit unexpected features such as the emergence 
of eigenstates with negative energy and the unpairing of bosonic and fermionic states 
with positive energy [3]. The purpose of this letter is twofold: 

(i) To describe the explicit breaking of supersymmetry in terms of the anomalous 
behaviour of the charges which define the susv partner Hamiltonians. 

(ii) The presence of anomalies enables us to consider a new form of factorizing 
Schrodinger equations. Qualitatively speaking, the factorization procedure introduces 
a reference level over the ground state. In such a case, it is the anomaly that allows 
us to recover the whole spectrum. 

To begin with let us repeat, mainly to set the notation, some important features 
about one-dimensional SUSY QM [4]. In its simplest formulation the model is specified 
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by a pair of Hamiltonians 

If we introduce the linear differential operators Q and Q+ in terms of the superpotential 
function W ( x )  as follows 

d 
dx 

d . __., - - - + p y x )  Q=-+ W ( X )  + -  dx 

then H- and H+ are given by [4] 

H-=Q+Q H+ = QQ+. 
In other words 

d2 
dx' 

H , = - - + V , ( x )  

(2) 

(3) 

(4) 

With regard to the hypothetical zero-energy eigenstates IYo(x)),  it occurs that the 
supercharges annihilate them, that is 

QYn-(x) = Q+Yo+(x) = O  (7) 

yo*(x) - e v (  * Ix W ( Y )  dy) . 

so that they can be obtained by solving first-order differential equations. Simply put 

(8) 

As square integrable zero-energy modes demand boundary conditions like 

**(x)+O as x+ fm (9) 

(8) says that the zero-mode, if it exists, must be non-degenerate. In such a case, its 
logarithmic derivative provides us with the superpotential W ( x ) .  It may be interesting 
at this point to restate the two main properties of SUSY QM which are taken for granted. 

(i) The spectrum of H, is bounded from below by zero. (For the sake of simplicity 
we restrict ourselves in the following to models exhibiting unly discrete spectra. In 
any case the extension of our arguments to cases including both discrete and continuous 
spectra can be performed without special difficulty). Let us consider Yi ( i = - ,  +) 
eigenstates of H,  with eigenvalues E,. As the Hamiltonians factorize according to the 
form exposed in (3), we have 

(*yiIH;l*;) = IIAil'J'Jl12 A _ = Q  A+=Q+. (10) 

Whenever the conditions Q t  = Q, and (Q+)t = Q are fulfilled. In such a case the 
eigenstates E, can either be positive or vanish (if the energy is zero we recover (7)). 
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(ii) The strictly positive eigenvalues E, appear in pairs. Precisely, by considering 
again 'Pz it happens that A,V, ( i  = - or +) is an eigenstate of H, ( i  = + or -) with the 
same eigenvalue. 

However the preceding picture changes dramatically when considering singular 
superpotentials. Such SUSY QM models exhibit explicit breaking so that unexpected 
features like negative energy eigenstates or unpairing of states with non-zero energy 
are feasible. Two different interpretations of the phenomenon have been considered 
in the !iterE!??re: 

(i) The SUSY algebra holds as an algebra of formal differential operators but not 
as an operator but not as an operator algebra in Hilbert space [ 5 ] .  

(ii) The presence of 'pathological' states without superpartner means no violation 
of SUSY but supersymmetry itself is realized on a narrowed class of states [ 6 ] .  

Next we establish the connection between SUSY QM explicitly broken and anomalies. 
Remembering that anomalies appear whenever a symmetry at classical level is not 
preserved when going to the quantum realm, the point is that an operator becomes 
anomalous if it does not keep invariant the domain of definition of the Hamiltonian. 
In such a case, the Ehrenfest theorem is broken and the classical equation of motion 
loses its validity if we go to the quantum level and take expectation values [7]. Retuming 
to SUSY QM, the description of the explicit breaking in terms of anomalies is transparent: 
it is the supercharges Q and Q+ tbemselves that exhibit the anomalous behavour. DH-  
and DH+ being the domains of definition of the self-adjoint operators H- and H+ 
respectively, the action of supersymmetry on 1") translates into 

and the anomaly appears if QDH-C DH+ or Q+DH+C DH. 
Next let us consider a superpotential W ( x )  of the type 

which yields Hamiltonians like 

(136) 

As (13a) is the equation of the harmonic oscillator, it happens that H- becomes 
essentially self-adjoint in DH-  = Cy( R, dx). In addition the eigenfunctions and eigen- 
values will read 

Yn- - exp(-x2/2)H.(x) (140) 

E.- = 2 ( n  - 1)  (146) n = 0, 1,. . . 
where Hn(x )  represent, as usual, Hermite polynomials. In such a case, we can split 
the domain of Ii into its even and odd pans 

DH--c.,cn = {'P~DH-/Y(x)=Y(-x)} W a )  

DH-odd= ( 'PED~-/ 'P(x)  = -'P(-x)}. (156) 
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Going to (13b) we need a more detailed analysis. H+ represents a particular case 
of the Hamiltonian 

which has been carefully considered in the literature. It happens that AC = 3/8 points 
out the dividing line between the cases where general self-adjoint extensions are 
necessary and those in which the extension is unique [Sj. Above the criticai point A,, 
at A = 2, we can start from Dh = C?(R -{O}, dx). In these conditions it is not difficult 
to verify that d- =d+ = O  (being d,, i = -, +, the deficiency indices associated with 
(16)). From a mathematical point of view as we move on the limit point the wavefunc- 
tions must vanish at x=O and h is essentially self-adjoint on D,,. Returning to (13b), 
we must consider the so-called Friedrichs extension so that H+ becomes self-adjoint 
with domain 

D H + ( ' P d 2 ( Q d x )  with [ - Y +  ( 3 1  x 2 + ~ - 1  Y d2(R ,dx)  and \ I r ( O ) = O  ] (17) 

Expressed in more physical terms, the singularity acts as an impenetrable barrier. 
This effect is tantamount to the compactification of the space so that the system lives 
oniy on the haii-iine. However, tne one-dimensionai non-degeneracy theorem is not 
necessarily valid for a potential with singular points [9] and we can construct out 
wavefunctions which are complete on the whole line. The price we pay is the double 
degeneracy (even the ground state) of the spectrum. Following the conventional 
procedure [lo, 111 we obtain 

Yn+even-{x2 exp(-x2/2)M.(-n, 5/2, x') -oo<x<oo) ( lea)  

(186) J {x' exp(-x2/2)M.(-n, 5/2, x') x 3 0 )  
{-x2 exp(-x2/2)Mn, 5/2, x') x<O} vn+dd- 

where M. are Kummer's confluent hypergeometric functions. Both eigenstates (180) 
and (18b) have the same energy: 

En+=4(n+l)  n =0,1,. . . (19) 

- 

so that the domain of H+ also splits into even and odd parts 

D H + ~ ~ ~ ~ = I ~ E D H + / \ I T ( x )  =*(-XI} (20a) 

D~+.,dd = {IYEDH+/"(X) = -v(-x)}. (206) 

In light of equations (15) and (20), the scheme in which the anomaly appears 
would be 

QDH-.A~C D H + ~ ~ ~ ~  and Q+DH+CYC~C DH-odd (21a) 

Q D H - C ~ ~ ~ C  &+odd and Q + D H + ~ N C  DH-."~" (216) 

so that the realization of SUSY is tantamount to a double explicit breaking. In effect, 
starting from DH-cvcn we get non-square integrable wavefunctions. On the other hand, 
once the odd extension DH+odd is performed we cannot come back to DH- by a2ing 
with Q+. 
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In addition, the presence of anomalies has important consequences when consider- 
ing the so-called method of factohzation. It has been known for a long time that 
Schrodinger-like equations can be written as products of a pair of linear differential 
operators [121. As a matter of fact it is supersymmetry that enables us to factorize the 
Hamiltonian [13]. If we have 

dZ 
dx2 

H ,  = --+ V(X) 

it happens that H, can be always be factorized .in the form 

H ,  = A,_A,+fE,  (23a) 

(236) 
d 

AI,=*-+ U , ( x )  dx 

whenever the function Ul(x) satisfies 

U : -  U : = V - E , .  (24) 

If A,_ is the adjoint of A,,, A,_A,+ represents a positive semi-definite operator 
so that the factorization is meaningful only if E ,  fulfils E , <  Eo,  Eo being the energy 
of the ground state '€',,(x). To be precise, if E, = E,,, the condition (24) is clearly satisfied 
if 

Returning to the conventional notation, Al+(A,-) are the supercharges Q(Q+), 
U , ( x )  represents the superpotential W(x) while the ground state Yo of H, corresponds 
to the zero-mode of Q+Q. Next we can generate the partner Hamiltonian 

H2 = A I + A I _ + & ,  (26) 

so that Hz has the same spectrum of eigenvalues as HI except for missing the ground 
state. One then keeps iterating this method, thus obtaining a hierarchy of Hamiltonians. 
In order not to clutter the article we recommend the readers to go through the work 
of Sukumar, where the possibility of factorization with energy E, below the ground 
state has been analysed in detail [14]. 

Now we deal briefly with the relationship between explicit breaking of SUSY, 
anomalies and factorization. If A,_A,+ is no longer a positive semi-definite operator, 
i.e. A,_ does not represent the adjoint of A,,, the factorization of H, is feasible with 
E ,  above the ground state energy E,,. In such a case the negative eigenvalues of the 
operator A,-A,+ enable us to recover the whole spectrum of HI. On the other hand, 
the Hamiltonians we obtain via SUSY lose their isospectral character with respect to 
their partners so that the concept of hierarchy acquires a different meaning. 

To finish we would like to stress the following points: 
(i) The potential of equation (12) represents a particular case of 

W(x) = x -- (27) 
X 

a model where the different realizations of SUSY (unbroken, spontaneously broken or 
explicitly broken) can be analysed in terms of the coupling constant g. 
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(ii) In a recent paper [15] we introduced a family of one-dimensional SUSY QM 
models which exhibit explicit breaking. As they include both discrete and continuous 
spectra it would be interesting to study the realization of the Levinson theorem in its 
SUSY version. 

(iii) With regard to factorization, the presence of anomalies breaks the isospectral 
property of the hierarchy of hamiltonians. As the relation between SUSY,  the ‘shape 
invariance’ of the hierarchy of Hamiltonians and the solvability of the first member 
of the series is a well known fact [16], it would be worthwhile to discuss the effect of 
the SUSY explicit breaking. We shall report on these subjects elsewhere. 

We thank the CICYT for financial support. One of us (JC) acknowledges the hospitality 
of the Center of Theoretical Physics at MIT, where this work was initiated. 
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